US009384222B2

a2 United States Patent

Banerjee et al.

US 9,384,222 B2
*Jul. §,2016

(10) Patent No.:
(45) Date of Patent:

(54) DATABASE SYSTEM THAT PROVIDES FOR 6,556,217 B1* 4/2003 Makipaaetal. ... 345/667
HISTORY-ENABLED TABLES 6,631,386 B1* 10/2003 Arun GO6F 17/30309
6,662,357 B1* 12/2003 Bowman-Amuah 717/120
3k
(75) Inventors: Jayanta Banerjee, Nashua, NH (US); 6,782,006 Bl 82004 Tanaka ... H04§{7§%gg
Robert Hanckel, Amherst, NH (US); 6.957,217 B2* 10/2005 Raverdy et al.
Siva Ravada, Nashua, NH (US) 7,236,993 B2* 6/2007 Brown GOSGF 17/30595
707/604
(73) Assignee: Oracle International Corporation, 7,287,034 B2 : 10/2007 Wongcccovvvnn. GOGF 17/30578
Redwood Shores, CA (US) 7,707,226 Bl 4/2010 TONSE ..ocevvevvvinrieecnns 707/796
’ 7,913,157 B1* 3/2011 Stoakleyetal. 715/203
)) o) 7,970,742 B2* 6/2011 Hanckel GOG6F 17/30551
(*) Notice: Subject to any disclaimer, the term of this 707/673
patent is extended or adjusted under 35 7,979,447 B2* 7/2011 DaCcoStaccoocvvrennnn. 707/754
U.S.C. 154(b) by 0 days. 7,983,910 B2* 7/2011 Subramanian etal. 704/250
This patent is subject to a terminal dis- (Continued)
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 13/440,702 Richard T. Snodgrass, “Developing Time-Oriented Database Appli-
cation in SQL” Introduction and Chptr. II, pp. 40 (Part 1 of 2, pp.
(22) Filed: Apr. 5,2012 1-253).
. L. (Continued)
(65) Prior Publication Data
US 2012/0191682 Al Jul. 26, 2012 Primary Examiner — Farhan Syed
A (74) Attorney, Agent, or Firm — Vista IP Law Group, LLP
Related U.S. Application Data
(63) Continuation of application No. 11/291,446, filed on (57 ABSTRACT
Dec. 1, 2005, now Pat. No. 8,156,083. Techniques for history enabling a table in a database system
so that past versions of rows of the history-enabled table are
(51) Int. CL available for temporal querying. The table is history enabled
GO6F 17/30 (2006.01) by adding a start time column to the table and creating a
(52) US.CL history table for the history-enabled table. The start time
CPC G06F 17/30306 (201301) ﬁeld’s Value in a row Of the history_enabled table indicates
(58) Field of Classification Search when the contents of the row last changed. The rows of the
CPC v, GO6F 17/30; GOG6F 17/00 history table are copies of rows of the history-enabled table
See application file for complete search history. that have been deleted or updated. The rows include end time
. fields whose values indicate when the row was updated or
(56) References Cited deleted. A history table’s row thus indicates a period in which
US. PATENT DOCUMENTS the hlstory.table s row was in the hl.story-er.labl.ed table.. Tem-
poral queries are performed on a view which is the union of
5848405 A 12/1998 Norcott the history-enabled table and the history table.
6,108,619 A * 8/2000 Carteretal.ccecernine 704/9
6,223,182 Bl 4/2001 Agarwal et al. 20 Claims, 6 Drawing Sheets
=

timestamp column 133
1o table <table_name>

Crealn new syatam
tablo <tabla_name>_
HISTORYS with

<lable_narms>"
columns and star_ime

column 137 and
end_tima column 13

Greal? new triggers 151
for the ables.

HISTORY_VI
that is the urion of the
|<table_pames as history|
|anabled and rows 138 of
io_name>_
HISTORYS

a rotam) an

US 9,384,222 B2
Page 2

(56)

8,156,083

2002/0103819
2004/0210606
2005/0223415
2007/0130171
2007/0130226
2007/0255755
2008/0033725
2008/0034276
2008/0077942
2008/0086757
2008/0092182
2008/0222546
2009/0164301
2009/0187575
2009/0271247
2010/0023506
2010/0050211
2010/0082684

References Cited

U.S. PATENT DOCUMENTS

B2 *

Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*

4/2012

8/2002
10/2004
10/2005

6/2007

6/2007
11/2007

2/2008

2/2008

3/2008

4/2008

4/2008

9/2008

6/2009

7/2009
10/2009

1/2010

2/2010

4/2010

Banerjee GOG6F 17/30306

707/679
Duvillier GO6F 17/30356
Brown GO6F 17/30595
Ohoetal. ..ooeevervivnnnn 726/27
Hanckel GO6F 17/30551
Banerjee GO6F 17/30306
Zhang et al. . . 707/104.1
Peak et al. ... 704/260
Ficco .oovveninns .. 715/201
MacMillan et al. 719/328
Pestoni v 726/2
Conant ... 725/109
Mudd et al. 715/765
O’Sullivan et al .. 705/10
DaCosta 707/10
Karelin et al. .. 705/10
Sahni et al. 707/5
Seldin et al.ccccvevenns 725/46
Churchill et al. 707/784

2010/0115051 Al* 5/2010 Robertetal. 709/217
2010/0121936 Al* 5/2010 Liuetal. 709/217
2010/0186041 Al* 7/2010 Chuetal.cccoovinnn. 725/46

OTHER PUBLICATIONS

Richard T. Snodgrass, “Developing Time-Oriented Database Appli-
cation in SQL” Introduction and Chptr. II, pp. 40 (Part 2 of 2, pp.
254-528).

“Oracle Flashback Technology”, Oracle Technology Network (pp. 6)
http://www.oracle.com/technology/deply/availability/htdocs/Flash-
back_ Overview.htm.

Tal Kelley, “Using Triggers to track database action history—Printer
Friendly Version” (pp. 3) http://www.developerfusion.com/scripts/
print.aspx?id-2413.

Mario Nascimento et al., “Indexing Valid Time Database Via
B+-trees—The MAP21 Approach”, TimeCenter Technical Report,
Mar. 9, 1998, pp. 1-26.

Vincent Lai et al., “Temporal Databases: Model Design and Com-
mercialization Prospects”, Aug. 1994, Data Base, vol. 25, No. 3, (pp.
6-18).

* cited by examiner

U.S. Patent Jul. 5, 2016 Sheet 1 of 6 US 9,384,222 B2

programs 105 : data 113
: DB system data 117
|
|
|
|
|
application program data 115 A_HISTORY _
application programs 111 VIEWS 141
RDB program 109 +* *
* * operating system data 119
operating system 107
memory 103 to, from to, from
display and input g—» processor 121 — —P etworks 124
devices 122

:

/’,
\

EnableHistory 146

AS_OF 147
BETWEEN 149

data dictionary 127: object definitions

PL/SQL functions for
history enabling 143

Insert 154 P
_ Ig Ty
Update 155 — = 12
[———————— - T A_HISTORY$S jo lg
Delete 157 |T_HISTORY VIEW$ | | 135 1€ 1€
| 141 1! I I
triggers for history | I : 15 |5
H LD 1
enabling 151 ! : Lo Tow 136 136140
I [I
| Pl g e -
| 1 21 v: ~ user objects 129
I I ol o ol
I I £1 E! | RO
I (==l |) 21
| | E 1 21 history-enabled table | .5 |
L_______1®= >} | A131 <
[row 142 _ " "n441148 51
\\ [
DB system ohjects 125 ‘F\ row 132 134

//,_
\

DBS persistent storage 123

=
=

U.S. Patent

Jul. §5,2016

Sheet 2 of 6

Add start_time
timestamp column 133
to table <table_name>

Create new system
table <table_name>_
HISTORYS$ with
<table_name>’s
columns and start_time
column 137 and
end_time column 139

'

Create new triggers 151
for the tables
<table_name> and
<table_name>_
HISTORY$S

Create new system view
<table_name>_
HISTORY_VIEW$
that is the union of the
rows 132 of
<table_name> as history
enabled and rows 136 of
<table_name>_
HISTORY$S

N

return 211

Fig. 2

205

207

208

209

US 9,384,222 B2

(DBMS_HIST.EnabIeHistory(<tab|e_name>)) 203

U.S. Patent Jul. 5, 2016 Sheet 3 of 6 US 9,384,222 B2

</ ON <insertion of a row in table_name as \> 315
history enabled> DO

|

Set the value of
start_time 133 in the 317
inserted row to the time
of the insert operation.

N

- ™
13 | return /) 219
</ ON <update of a row in table_name as > (/ ON <delete of a row in table_name as w
history enabled> DO N history enabled> DO

l 303 323

Prior to the update of
row 132, copy all fields
of row 132 to a new row 305

Copy all fields of the
row to a new row 136

. in <table_name>_ 325
136 |nH<|tSa_IP(I)e§$§me>_ HISTORYS
Set the value of Set the value of

end_time 139 in new end_time 139 in new
row 136 to the time of row 136 to the time of
the update operation. the delete operation.

l

307 327

Set the value of /
start_time 133 in : return \ 329
updated row 132 to the 321 A
time of the update 309
operation.

S01 < return 311

(98]
=

Fig. 3

U.S. Patent Jul. 5, 2016 Sheet 4 of 6 US 9,384,222 B2

order_id |order_dt |cust_name
1 1/2/2000|Jones
21 172712000 Smith
3| 1/472000|Green
41 152000 Miller
5

B

172000 Mevyer
1/10/2000|Mulligan

Order list 403 of orders received from 1/1/2000-1/12/2000

order_id [order_dt |cust_name start_time
3| 1/4/2000|Green 1/4/2000
5| Y7/2000|Meyer 1/7/2000

history-enabled table “Orders” 405 as of 1/12/2000

order_id |order_dt |cust_name [start_time [end_time

1| 1/2/2000|Jones 1/2/2000| 1/5/2000
2| 1/2/2000|Smith 1/2/2000| 1/5/2000
4 1/5/2000|Miller 1/5/2000 1/8/2000

6| 1/10/2000|Mulligan 1/10/2000] 1/11/2000

“Orders_HISTORY$” 407 as of 1/12/2000

order id |order_dt |cust name |start time [end _time
1 1/2/2000]|Jones 1/2/2000] 1/5/2000
2| 1/2/2000|5mith 17212000 1/5/2000
41 1/5/2000|Miler 1/5/2000| 1/8/2000
6| 1/10/2000|Mulligan 1119/2000] 1112000
3| 1/4/2000|Green 1/4/2000 | #EERARH#H#
| H72000|Meyer 172000 | #aERR#H

“Orders_HISTORY_VIEWS’ 409 as of 1/12/2000

S
o
=

Fig. 4

U.S. Patent

Jul. §5,2016

order=_iéd

cust_name

1

Jones

2

omith

3

Green

501

Gfd&ét‘=i§d

cust_name

1

Jones

503

Sheet 5 of 6

US 9,384,222 B2

nrder:&iéd

order_dt

cust_name

start_time

end_time

17212000

Jones

1/2/2000

1/5/2000

1/2/2000

Smith

1/2/2000

1/5/2000

1/5/2000

Miller

1/5/2000

1/8/2000

11472000

(Green

1/4/2000

RS

1/7/2000

Meyer

1/7/2000

505

order_id

cust_name

Miller

Mu!iﬁgaﬂ

Green

Mevyer

507

Fig. 5

U.S. Patent Jul. 5, 2016 Sheet 6 of 6 US 9,384,222 B2

=11 =T T T
Sl A_HISTORY$ 121518 Q
Ol 135 | @] l o l%
history-enabled table | £ | 3| | E1 21 E £
A131 g LRI R
[T} p= x = 1, O |
=] g1 | 81512 1%
© w_|__| LD L O,
2 row 132 34,523 fow 136 1381628 140630
=) modified table A619 A modified table
z A_HISTORY# 625
£
Q
ol
pd
>
= 631 633
TXN_row 607 | 609 643
TXN table 603
DML time to commit time converter 641
o
o
i
5
©
Q
:I
[}
£
sl|
3 645
3
&
HE table row 615 | 617

history-enabled table
metadata 611

)
=

US 9,384,222 B2

1
DATABASE SYSTEM THAT PROVIDES FOR
HISTORY-ENABLED TABLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 11/291,446, now U.S. Pat. No. 8,156,083, which
was filed on Dec. 1, 2005 and entitled “DATABASE SYS-
TEM THAT PROVIDES FOR HISTORY-ENABLED
TABLES”, the content of which is hereby expressly incorpo-
rated by reference in its entirety for all purposes. This appli-
cation is related to U.S. application Ser. No. 11/292,138,
“TECHNIQUES FOR IMPLEMENTING INDEXES ON
FIELDS OF DATABASE TABLES WHOSE VALUES
SPECIFY PERIODS OF TIME”, filed on even date with U.S.
application Ser. No. 11/292,138, now U.S. Pat. No. 7,970,
742, and having the same inventors and assignee, contains the
complete Detailed Description from the present patent appli-
cation and additional material describing time period indexes
that may be used with the history tables disclosed herein. U.S.
application Ser. No. 11/292,138 is hereby incorporated by
reference into the present patent application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

PARTIES TO A JOINT RESEARCH AGREEMENT
Not applicable.
SEQUENCE LISTING
Not applicable.
BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to database systems and
more particularly to techniques by which a database system
can automatically maintain a history of the changes made in
a table belonging to the database system.

2. Description of Related Technology

The technology that is related to the disclosed database
system that provides for history-enabled tables falls into two
broad categories:

Techniques for keeping track of insertions, updates, and
deletions so that errors occurring during operation of the
database system may be corrected; these techniques then
form the basis of techniques for determining the past
state of records and transactions in the database system;
and

Techniques for dealing with time information in database
tables. The techniques relative to these categories are
explained in the following.

Keeping Track of Insertions, Updates, and Deletions
in Database Systems

Most database tables contain only currently-valid informa-
tion; when a row in the database table is updated or deleted,
the information contained in the row prior to its modification
or deletion is lost. It soon became apparent to database users
that keeping the information that was discarded in the update
or deletion was worthwhile. To begin with, the reason for

10

15

25

30

35

40

45

50

55

60

65

2

keeping the information was to restore the original informa-
tion if the update or deletion had been erroneously made.
Possible sources of errors included the humans who were
entering the data or administering the database system, bugs
in queries and programs being executed in the database sys-
tem, and transactions which failed before they could be com-
pleted and therefore had to be rolled back. A transaction inthe
present context is a sequence of database operations which
the database system treats as a single unit: if all of the opera-
tions in the sequence are not completed, the transaction is
rolled back by undoing all of the operations that did complete.
When all of the operations have been undone, the database
has been restored to the state it was in before the failed
transaction took place with regard to the failed transaction. If
the conditions that caused the transaction to fail have been
eliminated, the transaction can then be redone. The database
system maintained a redo log in which it kept a record of
every change made in the database system; the redo log thus
contained the information needed to correct mistakes or redo
transactions. The only limitation on the redo log for correct-
ing mistakes or redoing transactions was the amount of stor-
age available in the database system for the redo log: the
database system treated the redo log’s storage as a circular
buffer; when the buffer was full, the database system contin-
ued to write the redo log by overwriting the oldest entries in
the log.

Early database systems allowed only one user to access
them at a time; modern database systems may be accessed by
hundreds of users at once. One consequence of this is that
transactions for anumber of users may be accessing the same
database record at the same time. If everyone who is access-
ing the database record is simply reading the database record,
such concurrent access presents no problem, but if some are
reading the record and others are modifying the record, incon-
sistencies may result. For example, in a read-only transaction
by a first user, the record should not change during the trans-
action, i.e., a read at the beginning of the transaction and a
read at the end should have the same results. However, if
another transaction by a second user changes the record dur-
ing the first transaction, the two reads will not have the same
result. One way of keeping this from happening is to use the
copy of the record to be read in the redo log for both the first
and second read. Database systems manufactured by Oracle
Corporation, of Redwood City Calif., have long used this
technique; recently, the SQL Server database system manu-
factured by Microsoft Corporation has begun employing a
technique in which the version of a record that exists at the
beginning of a transaction is maintained until the transaction
is finished.

Eventually, designers at Oracle Corporation realized that
the redo log was valuable not only to deal with errors and
concurrency problems, but also as a source of historical infor-
mation about the tables in the database system. Because the
redo log had a record for every change made in the database
system, it could be mined to find out what a table had looked
like at a particular point in the past or to obtain a sequence of
the changes made over time with regard to a single entity in
the database system. In 2003, Oracle Corporation introduced
autility for reading the history of information in the database
system from the redo log. This utility, termed Flashback,
permitted users to query the redo log as if they were querying
tables in the database system. The user specified a time in a
query and Flashback reconstructed a snapshot of the tables in
the query as they were at the specified time from the redo log
and then performed the query on the reconstructed tables. The
information from the query could be used to restore a table to
a previous state or simply to see what the table looked like at

US 9,384,222 B2

3

the specified time. The user could also specity two times, and
Flashback returned records as they had changed between the
times. Of course, as with everything else that uses informa-
tion in the redo log, Flashback can go no further back than the
oldest available portion of the redo log. Another consequence
of reconstructing the tables from the information in the redo
log is that the further back into the redo log the database
system has to go to reconstruct the table, the longer the
reconstruction takes.

Techniques for Dealing with Time in Database
Tables

There are of course many situations in which a user will
include time information in a database table. A systematic
discussion of the ways in which this may be done and of the
difficulties that SQL, the standard language used to write
queries in relational database systems, has in expressing que-
ries involving time information may be found in Richard T.
Snodgrass, Developing Time-oriented Database Applications
in SQL, Morgan-Kaufmann Publishers, San Francisco, USA,
2000. Useful terminology from the Snodgrass book includes
the following:

There are three fundamental temporal datatypes:

Instant: something happened at an instant of time (e.g.,
now, Jul. 18, 2005, when this is being written, or some-
time, perhaps much later, when it is being read)

Interval: a length of time (e.g., three months)

Period: an anchored duration of time (e.g., the fall semes-
ter, Aug. 24 through Dec. 18, 1998)

There are three fundamental kinds of time.

User-defined time: an uninterpreted time value

Valid time: when a fact was true in the reality being mod-
eled in the table

Transaction time: when a fact was stored in the database

These kinds of time are orthogonal: a table can be associ-
ated with none, one, two, or even all three kinds of time.
Snodgrass terms a table which is associated with valid time a
valid-time state table; he terms a table which is associated
with transaction time a transaction-time state table; he terms
a table which is associated with both kinds of time a bitem-
poral table. Transaction-time state tables have the property
that they can be reconstructed as of a previous date. Valid time
state tables and bitemporal tables permit queries involving
specific points in time and periods of time. Such queries are
termed in the following temporal queries. Examples are a
query to determine what versions of the table’s rows were in
the table as of a given date and a query to determine what
versions of the table’s rows were in the table during a given
period of time.

In Snodgrass’ examples, the transaction-time state for a
table is simply incorporated into the table; a paper by Tal
Kelley, Using Triggers to track database action history from
the year 2001, which was found in July 2005 at developerfu-
sion.com/scripts/print.aspx?id=2413, describes a technique
for associating a history database table with a primary data-
base table. A row is inserted in the history table whenever a
row is inserted into the primary table or an existing row in the
primary table is updated. The history table has columns that
are equivalent to those in the primary table and has additional
columns that indicate the time at which the row in the primary
table was inserted or updated and the operation in the primary
table that resulted in the row being inserted in the history
table. When a row is inserted in the primary table, the row
inserted into the history table includes the data from the
primary table row, the time the row was inserted in the pri-
mary table, and indicates that the operation was “insert”.

10

15

20

25

30

35

40

45

50

55

60

65

4

When a row is updated in the primary table, the row that is
inserted in the history table has the data from the primary
table row as it was before the update, the time the row was
updated in the primary table, and indicates that the operation
was “update”.

The rows are inserted into the history table by triggers, that
is, user-written code that is automatically executed by the
database system when certain events occur with regard to a
table. Two of the events which may result in the execution of
a trigger are the insertion of a row and the update of a row;
thus, an insertion of a row in the primary table results in an
execution of an insert trigger that creates the row correspond-
ing to the insertion operation in the history table; similarly,
the update of a row results in an execution of an update trigger
that creates the row corresponding to the update operation.

It should be pointed out here that the history table is an
example of a transaction-time state table, albeit one that is
rather hard to use, because Kelley’s history table entry only
specifies when the operation on the primary table that resulted
in the creation of the row in the history table creation was
performed and because the meaning of the time value
depends on the operation on the primary table that caused the
history table row to be created: in the case of an insertion, the
time value indicates when the corresponding row in the pri-
mary table began existing; in the case of an update, the time
value indicates when the corresponding row in the primary
table ceased existing in the form specified in the history table
row. Thus, using Kelley’s history table to figure out the time
period during which a given row of the history table existed in
the primary table is a complex and expensive operation.

As can be seen from the foregoing, currently-available
techniques for keeping track of the history of a file in a
relational database system have their drawbacks: Flashback is
easy to use but requires a relational database system that
keeps a redo log and is limited by the redo log: if the infor-
mation for the table to be reconstructed is no longer in the
redo log, Flashback cannot reconstruct the table; further, the
time it takes to reconstruct the table is determined by how
much of the redo log Flashback has to read to obtain the
information necessary to reconstruct the table. It is of course
possible for users of database systems to implement their own
arrangements for keeping track of the history of tables of
interest, but as the Snodgrass book demonstrates, more than
ordinary expertise in SQL is required to properly construct
and use arrangements for keeping track of the history of
tables, and the Kelley reference serves as an illustration both
of the required programming expertise and of some of the
pitfalls involved in making one’s own arrangements to keep
track of the history of a table. What is needed is a technique
for keeping track of the history of individual tables of interest
which is as easy to use as Flashback but does not depend on
the redo log and consequently is not limited by the amount of
redo log available and does not require reading the redo log.
It is an object of the invention disclosed herein to provide such
a technique.

BRIEF SUMMARY OF THE INVENTION

The foregoing object of the invention is achieved by tech-
niques for making a history-enabled table which preserves
past versions of rows of the history-enabled table and permits
temporal queries on the past versions. The history-enabled
table’s columns include a set of other columns, a start time
column, and a period column. The history-enabled table’s
rows include a set of current rows and a set of history rows.
Each current row contains current values of the fields that
belong to the set of other columns and a start time value which

US 9,384,222 B2

5

indicates the time at which the most recent change in the
current values occurred. The set of history rows have copied
fields belonging to the set of other columns or a subset thereof
and a row period field belonging to the period column. When
a current row is deleted or updated, the values of the copied
fields are copied from the current row prior to the update or
deletion and the row period field’s value is set to indicate the
period between the copied current row’s start time value and
the time of the update or deletion of the copied current row.

In one embodiment, the history-enabled table is made up of
two tables and a view: One of the tables is made by adding the
start time column to the other columns and contains the set of
current rows. Another of the tables contains the set of history
rows. The temporal queries are performed on a view which is
a union of the first table and the second table.

Another aspect of the invention is techniques for creating
and maintaining the history-enabled table. Apparatus for so
doing includes a table that is to be history enabled, a history-
enabled table creator that makes a current row table and a row
history table, and a history-enabled table maintainer that
responds to a change in a field in a row of the current row table
by making a history table row that is a copy of the row of the
current row table prior to the change, setting the history table
row’s row period value to indicate the period between the
time indicated in the copied current row table row’s start time
value and the time at which the change occurred, and setting
the start time value in the changed current table row to the
time at which the change occurred. A method for creating and
maintaining the history-enabled table is also set forth.

A third aspect of the invention is a method of setting a time
field in a row in a relational database management system
where the value of the time field indicates the time of an event
that is part of a transaction that is performed in the database
system. The method steps include setting a transaction iden-
tifier field that is related to the time field in the relational
database management system to a transaction identifier for
the transaction, setting the time field in the row to a time that
is during the transaction but prior to the transaction being
committed, after the transaction has been committed, using
the transaction identifier in the related field to determine the
commit time of the transaction, and setting the time field in
the row to the commit time.

Other objects and advantages will be apparent to those
skilled in the arts to which the invention pertains upon perusal
of the following Detailed Description and drawing, wherein:

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

FIG. 1 shows a relational database management system in
which history-enabled tables has been implemented;

FIG. 2 is a flowchart of the EnableHistory PL/SQL proce-
dure;

FIG. 3 is flowcharts of triggers used in a preferred embodi-
ment;

FIG. 4 is an example history-enabled table;

FIG. 5 shows sets of rows returned by temporal queries on
Orders_HISTORY_VIEWS table 409; and

FIG. 6 shows a version of a history-enabled table that
permits the use of DML times for start_time and end_time.

Reference numbers in the drawing have three or more
digits: the two right-hand digits are reference numbers in the
drawing indicated by the remaining digits. Thus, an item with
the reference number 203 first appears as item 203 in FIG. 2.

DETAILED DESCRIPTION OF THE INVENTION

The following Detailed Description will begin with a
description of a relational database system in which history-

40

45

65

6

enabled tables may be implemented, will then provide over-
views of how history-enabled tables are implemented in the
relational database system and of operations on history-en-
abled tables, and will finally provide a detailed example of a
history-enabled table.

A Relational Database System in which
History-Enabled Tables May be Implemented:
FIG. 1

The history-enabled tables disclosed herein may be imple-
mented in any relational database system. FIG. 1 shows the
portions of a typical relational database system 101 that are
relevant to the present discussion and how history-enabled
tables are implemented in database system 101. The main
components of system 101 are a processor 121, a memory 103
which contains programs 105 being executed by the proces-
sor and data 113 involved in the program executions, and
persistent storage 123 for the database system’s tables and
other objects. Processor 121 may further receive inputs from
input devices such as a keyboard and/or pointing device and
produce outputs to a display device such as a CRT, as shown
at 122, and may also receive inputs from and provide outputs
to one or more networks, containing other processors, as
shown at 124.

When system 101 is operating, programs 105 in memory
103 include an operating system 107, a relational database
system program 109, and application programs 111 that
employ the services provided both by operating system 107
and database program 109. Correspondingly, data 113 in
memory 103 includes data for the application programs 115,
data for the operating system 119, and data for the database
system. Operation typically involves an application program
111, which provides a query to relational database program
109. Database program 109 executes the query on the tables
in persistent storage 123 and provides the result to application
program 111. Both RDB program 109 and application pro-
gram 111 use the services provided by operating system 107,
and execution of the application program or the database
RDB program may involve inputs from and outputs to [/O
devices and the network.

Continuing in more detail, persistent storage 123 contains
two classes of objects: DB system objects 125, which are
objects, including tables, that are defined by database system
101 and are used by database system 101 to manage and
operate the database system, and user objects 129, which
contain tables and other objects defined by users of the data-
base system. Data dictionary 127 contains definitions of all of
the objects in the database system.

The most important objects in database system 101 are
tables. A table defines a set of rows, all of which have the same
columns. There are three kinds of tables in most database
systems: base tables, views, and materialized views. Base
tables are the tables that are the actual sources of the data in
the table rows returned by a query. Views are tables which do
not exist in their own rights in persistent storage 123, but are
instead created using data from other tables. A view is defined
in the data dictionary by a query on other tables. The other
tables may also be views, but the data must ultimately come
from base tables. A materialized view is a view of which, for
reasons of efficiency, a copy has been made in persistent
memory. Data dictionary 127 contains definitions of base
tables, of tables defined in terms of the base tables, and
definitions of other objects that are defined for the tables.
These other objects include indexes, which speed up access to
the data contained in a column of a table, triggers, which
define actions to be taken upon occurrence of events concern-

US 9,384,222 B2

7

ing the table, and functions, which are programs that operate
on database system objects. In a preferred embodiment of
database system 101, the functions are written in the well-
known PL/SQL language.

Implementing a History-Enabled Table in Database
System 101

FIG. 1 shows the objects in database system 101 that are
required to implement a history-enabled table. Except for the
table which is being history-enabled, all of the objects that
implement the history-enabled table are system objects that
are defined by RDBMS 101. In RDBMS 101, the table that
has been history-enabled is table A 131. The table that is
history-enabled will generally be user-defined, but may of
course be system-defined as well. In the preferred embodi-
ment, any table which is defined as one that can exist in
RDBMS 101, i.e., is a base table or a materialized view, may
be history enabled.

History-Enabled Tables and Related Tables and
Views

When table A 131 is history-enabled, RDBMS 101 adds a
system-defined column to the table. The column, which
appears as start_time column 133 in table A, contains time
stamp values. For each row 132 in table A, the time stamp
value in start_time column 133 indicates when the row last
changed. Thus, when the row is first inserted into the table, the
row’s start_time field is set to the time at which the row was
inserted; each time the row is updated, the row’s start_time
field is set to the time at which the row was updated.

Besides adding start_time column 133 to the history-en-
abled table, RDBMS 101 creates a new table A_HISTORY$
135 which contains copies of rows that have changed in table
A 131. The change may be either an update of the row or a
deletion of the row. Each row 136 intable A_ HISTORY$ 135
contains the data for a changed row 132 in table A as it was
prior to the change, including the value of the row 132’s
start_time field 133, as may be seen from start_time column
137in A_HISTORYS table 135. Table 135 thus has all of the
columns of table A 131. In addition to having all of the
columns of table A 131, A_HISTORY$ 135 has another time-
stamp column, which appears in FIG. 1 as end_time column
139. The value of this column in each row 136 is set to the time
at which the update or deletion operation on table A 131
occurred which caused the copy of the row to be made in
A_HISTORY$ 135. Thus, the values in the fields belonging to
start_time 137 and end_time column 139 indicate the period
during which the row 132 of which row 142 is a copy existed
in history-enabled table A 131. As can be seen from this
description, A_HISTORY'S table 135 is thus what Snodgrass
terms a transaction-time state table with regard to all rows 132
of'table A 131 which have been deleted or updated since they
were inserted into table A. Tables A 131 and A_HISTORY$
135 between them are further a transaction-time state table
with regard to all rows of table A 131 that have existed since
table A was history-enabled.

RDBMS 101 produces this complete transaction-time state
table for table A 131 by means of system-defined A_HISTO-
RY_VIEW $ 141, which is a union of all of the rows 132 from
table A 131 with all of therows 136 from A_ HISTORY $ table
135. View A_HISTORY_VIEWS$ 141 has all of the columns
of A_HISTORYS$ table 135, including start_time column 143
and end _time column 145; when a row 142 of A_
HISTORY_VIEW §$ 141 comes from table A 131, it has a

10

15

20

25

30

35

40

45

50

55

60

65

8

symbolic value of -1 in its field in end_time column 145,
indicating that the row 142 corresponds to a row 132 that still
exists in table A 131.

Making a Table into a History-Enabled Table: FIG. 2

In a preferred embodiment of RDBMS 101, RDBMS 101
includes a system-provided PL/SQL procedure called
DBMS_HIST.EnableHistory. The procedure is shown at 146
in FIG. 1. In a preferred embodiment, the procedure takes a
single argument: the name of the table in RDBMS 101 which
is being history-enabled. Of course, the name may be a value
returned by a PL/SQL function that defines the table and
returns its name. In other embodiments of EnableHistory, the
arguments may contain the information needed to define the
table to be history enabled. FIG. 2 is a flowchart 201 of
DBMS_HIST.EnableHistory 146.
The PL/SQL interface for invoking EnableHistory 146 is
shown at 203. When executed, the code performs four opera-
tions:
it adds start_time timestamp column 133 to the definition
in RDBMS 101 of the table 131 that is being history
enabled (205);

it creates HISTORY'$ table 135 corresponding to history-
enabled table 131. Table 135 has all of the columns of
table 131 as history enabled, and additionally has
end_time timestamp column 139 (207);

itcreates the triggers 151 that maintain the start_time fields
134 in history-enabled table 131 and the start_time fields
138 and the end_time fields 140 in A_ HISTORY S table
135 (208); and

it creates HISTORY_VIEWS view 141 corresponding to
history-enabled table 131. View 141’s rows 142 are the
union of the rows 132 of the history-enabled table and
rows 136 of HISTORY$ table 135 (209).

An important advantage of history-enabled tables such as
table 131 is that they can be new tables which include a
start_time column 133 or be made from preexisting tables by
simply adding start_time column 133 to the preexisting table.
When a preexisting table is history enabled, a question arises
as to how the time stamps in start_time column 133 should be
set for the rows that were in table 131 at the time it was history
enabled. The preferred embodiment offers the user two
choices in this regard:

start_time for all of the preexisting rows is set to the time at

which the table was history-enabled; or

start_time for the preexisting rows is set to the time at

which the table was created; this time is obtainable from
the definition of the table in data dictionary 127.

In the preferred embodiment, the default is the time at
which the table was history enabled; a parameter in the invo-
cation of EnableHistory may be used to specify the other
alternative.

Maintaining a History-Enabled Table: FIG. 3

Once a table has been history-enabled, start_time fields
133 in the table’s rows 132 and the rows of HISTORY'$ table
135 are maintained by triggers that are executed whenever a
row 132 is inserted, updated, or deleted. There is a trigger for
each of these actions. The triggers are shown at 151 in FIG. 1
and FIG. 3 has flowcharts for the triggers.

Shown at 313 is the flowchart for insert trigger 154. The
only action performed by this trigger is setting the value of
start_time field 133 in the row to the time of the insert opera-
tion (317). The flowchart for update trigger 155 is shown at
301. Prior to the update on row 132, trigger 155 copies all of

US 9,384,222 B2

9

the fields of the updated row to a new row 136 in HISTORY'$
table 135 (305). Then trigger 155 sets the value of end_time
field 139 in new row 136 to the time of the update operation
(307). Finally, trigger 131 sets the value of start_time field
133 to the time of the update operation (309). The flowchart
for delete trigger 157 is shown at 321. As may be seen there,
steps 325 and 327 are identical to that of steps 305 and 309 of
the update operation, except that because the row 132 in
history-enabled table 131 is being deleted, there is no deed to
update that row’s start_time field 133.

Performing Temporal Queries on a History-Enabled
Table

When a table is history enabled, temporal queries may be
executed on HISTORY_VIEWS view 141. As a view, HIS-
TORY_VIEWS is constructed by RDBMS 101 in DB system
data 117 when the query on the view is executed. The
start_time field 143 and end_time field 145 in each row of
HISTORY_VIEWS specifies either a period of time which
has ended (if the row is from HISTORYS table 135) or a
period of time which has not yet ended (if the row is from
history-enabled table 131). In a preferred embodiment, two
queries are permitted over these periods of time: AS_OF 147,
which takes a given instant of time as a parameter and deter-
mines what rows 142 in HISTORY_VIEWS 141 have periods
of time defined by fields 143 and 145 such that the instant of
time is included in those periods, and BETWEEN 149, which
takes a given period of time as parameter and determines what
rows 142 have periods of time defined by fields 144 and 146
such that the given period of time overlaps some or all of the
row’s period of time. It must be noted that the AS_OF opera-
tor always returns at most one historical incarnation of any
row of the history-enabled table. The BETWEEN operator, in
contrast, may return multiple incarnations of any row of the
history-enabled table. Other queries are possible with regard
to the periods of time: whether the given period of time is
contained in the row’s period of time, whether it spans the
row’s period of time, whether the given period of time abuts
but is before the row’s period of time, and whether the given
period of time abuts but is after the row’s period of time. Other
ways of representing the periods of time are also possible.
Amongthem are a single timestamp column and an interval of
time column and a single timestamp column and other infor-
mation in the table from which the period of time can be
computed given the time stamp.

In a preferred embodiment, AS_OF and BETWEEN are
both implemented as PL/SQL functions that are employed in
the WHERE clause of an SQL query. The functions construct
subqueries from the arguments in the function that return
rows that satisfy the AS_OF condition or the BETWEEN
condition. The AS_OF function invocation looks like this:

AS_OF(<HISTORY_VIEWS table name>, <date>)

The subquery that AS_OF produces looks like this:

SELECT * FROM <HISTORY__VIEWS table name> WHERE
(<date> = start_time) AND ((<date> = end__time) OR
(end__time = -1))

The BETWEEN function invocation looks like this:

BETWEEN(<HISTORY_VIEWS$ table name>,
<Ib_date>, <ub_date>)

where <lb_date> is the lower bound of the given period of
time and <ub_date> is its upper bound.

10

15

20

25

30

35

40

45

50

55

60

65

10
The subquery that BETWEEN produces looks like this:

SELECT * FROM <HISTORY__ VIEWS$ table name> WHERE
(<ub__date = start_time) AND ((<Ib__date> < end__time) OR
(end time = -1))

It should be pointed out at this point that the exact syntax
used to history enable a table or to invoke a temporal query on
the table is a matter of designer’s choice and may vary from
one SQL implementation to another. In the preferred embodi-
ment, PL/SQL functions are used for the interfaces and the
fact that the temporal query is performed on the
HISTORY_VIEW §$ view is not hidden from the user; in other
embodiments, the SQL language may be extended to permit
atable to be history-enabled and temporal queries to be made
on it without the use of PL/SQL functions and the HISTO-
RY_VIEWS view may be hidden from the user. Similarly, the
temporal query operations provided, the names that are given
them, their semantics, and their syntax are a matter of design-
er’s choice and may vary from one SQL implementation to
another.

AN EXAMPLE

FIGS. 4 and 5

FIG. 4 presents an example 401 of'a small history-enabled
table Orders 405. The table has four columns: order_id, which
is the ID number for an order, order_dt, which is the date the
order was received, cust_name, which is the name of the
customer making the order, and start_time, which the
RDBMS added to Orders when it was history enabled. Orders
is atable of orders that are currently being processed: when an
order is received, an entry is made in Orders; when the order
has been filled, the entry is deleted. Updates occur only when
the data in the table has to be corrected. The invocation of
DBMS_HIST.EnableHistory that history enabled the table
looked like this:

DBMS_HIST.EnableHistory(‘Orders’)

At 403 is shown a list of orders received from Jan. 1, 2000
through Jan. 12, 2000. This list is not kept in the RDBMS, but
is provided here to aid in understanding the contents of the
tables of FIG. 4.

Because Orders is history enabled, the RDBMS that con-
tains Orders also contains Orders_ HISTORY$ 407, which
has a row for every row has been updated or deleted from
Orders. The rows in Orders_ HISTORY$ thus include a row
for every order which has been filled. Finally, the RDBMS
provides the view Orders_HISTORY_VIEWS, which is the
union of the rows that are currently in Orders 405 and
Orders_HISTORYS 407. Orders 405, Orders_HISTORY$
407, and Orders_HISTORY_VIEWS 409 are all shown as
they are as of Jan. 12, 2000. As already explained, the rows in
Orders_HISTORY'$ 407 are inserted into table 407 by a trig-
ger that is executed whenever a delete or update operation is
performed on a row of Orders 405 and view 409 is the union
of tables 405 and 407.

As can be seen from Orders 405 and Orders_ HISTORY'$
407, filling an order generally takes three days; two orders,
numbers 3 and 5, however, are taking longer, and one order,
number 6, was filled in a single day. The fact that 3 and 5 have
not yet been filled is indicated in Orders_HISTORY_VIEW$
409 by #### in the end_time field.

US 9,384,222 B2

11

Some example temporal queries on Orders_HISTORY-
VIEWS$ 409 are the following:

SELECT t.order_id, t.cust_name FROM Orders_ HISTORY_ VIEW$ t
WHERE AS__OF(t, ‘1/4/2000°) = 1

For each row that the AS_OF operator is evaluated on, the
value returned by the operator is either true or false. In a
preferred embodiment, if the value is false, AS_OF evaluates
to 0; if true, AS_OF evaluates to 1. The above query returns
rows for all of the orders that were in the process of being
filled on Jan. 4, 2000; The rows are shown at 501 in FIG. 5.
Note that they include the row for order 3, which, since it still
has not been filled, is still in Orders table 605.

Of course, the output of AS_OF may be further filtered by
other elements of the WHERE clause:

SELECT t.order_id, t.cust_name FROM Orders_ HISTORY_ VIEW$ t
WHERE t.cust__name = ‘Jones’
AS__OF(t, *1/4/2000") =1

This query returns the single row shown at 503.
Here are some BETWEEN queries:

SELECT * FROM Orders_ HISTORY_ VIEW§$ t
WHERE BETWEEN (t, “1/4/2000°,
1/7/2000%) = 1

BETWEEN returns true or false in the same fashion as
AS_OF. The above query returns all of the orders that were in
process between the two dates given, including those for
which the processing had begun before Jan. 4, 2000, but
finished during or after Jan. 7, 2000 and those for which the
processing had begun on or after Jan. 4, 2000 and finished
after Jan. 7, 2000. As shown at 505, the returned rows are thus
the rows for every order but order 6, for which the processing
began after Jan. 7, 2000.

Another example, for the time period Jan. 8, 2000 and Jan.
10, 2000, this time with only the order_id and cust_name
columns being selected:

SELECT t.order_id, t.cust_name FROM Orders_ HISTORY_ VIEW$ t
WHERE BETWEEN (t, ‘1/8/2000°,
1/10/2000”)

The result is shown at 507; the data comes from all of the
orders but the first two, for which processing was finished
before the beginning of the time period specified in the query.

Determining What Values to Use for Start_Time and
End_Time

In the foregoing discussion, we have presumed that the
database transactions in which the insertion and update
operations occur which set the time stamp value of a
start_time field 133 or the update and deletion operations
occur which make new rows in HISTORY'$ table 135 and set
the time stamp values of start_time field 137 and end_time
field 139 are substantially instantaneous; in fact, however, the
lengths of transactions may vary, and some transactions may
continue for a considerable period of time. Further, transac-
tions may overlap; one transaction may start earlier and end

5

10

15

20

25

30

40

45

50

55

60

65

12

later than another transaction. There are three times in a
transaction that can be used to the start_time and end_time
timestamps:

the transaction start time: the time at which the transaction

that inserts, updates, or deletes a row in history-enabled
table 131 begins;
the transaction commit time: the time at which the trans-
action commits, i.e., the time at which the database
system actually makes the changes to the database sys-
tem that occur during the transaction permanent; and

the DML time for the change that causes the timestamp to
be set. The DML time is the time in the transaction at
which the row is inserted, updated, or deleted, but the
transaction has not yet been committed. DML stands
here for Data Manipulation Language, the subportion of
the SQL query language that is used to manipulate the
data in a database table. Insert, update, and delete are all
DML operations.

Each of these times can be used for the start_time and
end_time timestamps and each has difficulties.

The most accurate time to use is the commit time of a
transaction. At that time, all DML operations (update, insert,
delete) have been committed, and all changes to the database
become permanently available for the future. However, there
is an overhead associated with using the transaction end time.
When a DML operation happens, the commit time for the
transaction performing the DML operation is not yet known;
consequently, the DML operation cannot set the start_time
and end_time fields. Instead, these fields must be set by an
additional commit trigger which is executed when the trans-
action that performed the DML operations is committed. The
need to execute the commit trigger requires extra CPU time
and occasionally added I/O time for rows that have been
paged out by the database system’s paging algorithm and
must be paged back in order to set the start_time and end_time
fields.

The start time of the transaction is known when the insert,
delete, or update operation is performed, so the start_time and
end_time fields can be set as part of the insert, delete, or
update operation. The problem comes when a short transac-
tion T2 starts after and commits before a long transaction T1.
Starting after T1, but before T1 has touched row R, T2 updates
row 132 in history-enabled table 131 R to R', so that R is
copied to a new row 136 in HISTORY'$ table 135. The times-
tamps in row R' 132’s start_time field 143 and in row R 136°s
end_time field 139 are both set to the start time of T2, T2 start.
After T2 commits, T1 updates row R' 132 to R" in history-
enabled table 131 and copies R' to a new row 136 in HIS-
TORYS$ table 135. The timestamps in row R" 132’s start_time
field 143 and in row R' 136’s end_time field 139 are both set
to the start time of T1, T1start, which is earlier than T2 start.
Thus, R" will have an earlier timestamp than R' even though
the change that produced R' happened earlier than the change
that produced R".

Using the DML time to set the timestamp values in
start_time fields 133 and end_time fields 139 avoids both the
extra overhead of using the transaction’s commit time and the
possible inconsistencies of using the transaction’s start time
The difficulty with using the DML time is that there is a
potential for seeing inconsistent historical data when a trans-
action is long and a query is made during the transaction
which simultaneously views two time-separated updates. For
example, assume that a transaction performs a transfer of
$100 from a checking account to a savings account on a day
X as follows: at 1:00, the transaction deducts the $100 from
the checking account; at 2:00, the transaction adds the $100 to
the savings account. If the table for the checking account and

US 9,384,222 B2

13

the table for the savings account are both history-enabled, the
start_time timestamp for the copy of the row affected by the
transaction in the checking account table’s HISTORY table
135 will say 1:00. The end_time time stamp for the copy of
the row affected by the transaction as it was prior to the
transaction in the savings account’s HISTORY$ table will say
2:00. If an AS_OF query is later made of the savings and
checking account tables to see the combined balance in the
two accounts as it was as of 1:30 on day X, the AS_OF query
will see the record for the deduction in the checking account
table’s HISTORY$ table, but will not see the record for the
addition to the savings account in the savings account table’s
HISTORYS table and the total balance will be $100 too low.

A Solution to the Problems of Using DML Time:
FIG. 6

Situations like the one described above for DML time are
not common and will never occur in many applications for
which history-enabled tables are useful. However, where they
can occur and the user desires the efficiency of using DML
time without losing the guaranteed correctness of using com-
mittime, the approach 601 shown in FIG. 6 may be employed.

Both the original and history tables are enhanced with an
additional transaction number column for each start_time
column 133 and 137 and end_time column 139. The values in
the transaction number columns indicate the transactions in
which the values in the start_time and end_time columns
changed. These enhanced tables are shown at 619 and 625 in
FIG. 6 and the added columns at 621, 627, and 629. Whenever
a timestamp is written in start_time field 133, the transaction
number for the transaction that performed the operation that
caused the timestamp to be written is written to the corre-
sponding transaction number field 623 through flow 633;
when a new row 136 is written in A_HISTORY'$ table 135,
fields 134 and 623 from the row in table A 131 are written and
to fields 138 and 628 through flows 635 and 636, and when
field 140 is written through flow 638, the transaction number
for the transaction that caused the new row 136 to be written
is written to field 630 through flow 639.

Further, we separately maintain a record of the commit
timestamps of all transactions. This information is tradition-
ally maintained in a system table in most database systems In
FIG. 6, it appears in TXN table 603, which has a row 607 for
each transaction. A transaction’s row is accessible by trans-
action number. One of the columns in table 603 is TXN_com-
mit_time 605, Field 609 belonging to this column in each row
contains the commit time for the row’s transaction. There is
also a system utility program—here termed DML time to
commit time converter 641 which can be invoked occasion-
ally during quiet periods (say, Sundays at midnight) to con-
vert the DML times in fields 134, 138, and 140 to commit
times. Only the most recently changed rows need to be
touched, namely those that were changed after the immedi-
ately prior invocation of the utility program for the history-
enabled table. The information as to the last invocation of the
utility program for a given history-enabled table is contained
ina system table 611 ofhistory-enabled table metadata which
contains a row 615 for each history-enabled table. There is a
column 613 in this table for the last time the DML times in the
history-enabled tables were updated to commit times, and the
field 617 for this column in a given row has a time stamp for
the last time the updating was done for the history-enabled
table represented by the row.

The algorithm is straightforward: When utility program
641 is invoked for a given history-enabled table (table A 131
in FIG. 6), it obtains the timestamp for the last time the DML

5

10

15

20

25

30

35

40

45

50

55

60

65

14

times in table A 131 and its associated A_ HISTORYS table
were updated to commit times from field 617 in history-
enabled table metadata 611 (arrow 645) and then finds the
rows in tables A 131 and A_HISTORY$ 135 whose times-
tamps in fields 134, 138, and 140 indicate times later than the
time ofthe lastupdate. These timestamps specify DML times.
For each of these rows and for each timestamp in the that
indicates a time later than the time of the last update, converter
641 uses the transaction number associated with the times-
tamp to query TXN table 603 for commit time 609 for the
transaction, as shows by arrow 643, and replaces the DML
time time stamp with the commit time timestamp from TXN
table 603. The flow of transaction numbers from these rows to
the converter is shown at 623, 628, and 630; the flow of
commit time timestamps that replace the DML time stamps is
shown at 631, 636, and 638. It should be pointed out here that
the foregoing technique for converting a non-commit-time
time stamp that identifies the time of an event in a transaction
to a commit time time stamp for the transaction can be used in
any situation in which the row that has the non-commit-time
time stamp for the time of the event includes a field whose
value is the transaction number for the transaction in which
the event occurred.

Of course, an RDBMS may provide both options: commit
time as the start and end times where total consistency is
required and DML time for high run-time performance. A
further option with DML time would be the table modifica-
tions and timestamp conversion utility program just dis-
cussed.

Conclusion

The foregoing Detailed Description has disclosed to those
skilled in the relational database field how to make and use
history-enabled tables and has further disclosed the best
mode presently known to the inventors of making and using
the tables. Those skilled in the relational database field will
immediately recognize that many embodiments of the con-
cepts of the invention other than the one disclosed herein are
possible. For example, the technique may be applied to any
kind of table in a database system. The history-enabled table
may be a new table that is created as history enabled or a
previously defined or even preexisting table which is made
into a history-enabled table. The history-enabled table and/or
the history table may be views and the history view may be a
materialized view or may be a base table which contains the
history table rows and the rows of the history enabled table.
The history-enabled table may contain fewer than all of the
columns of the table it is based on, and the history table may
contain a subset of the columns of the history-enabled table.
The extent to which a relational database system provides
support for history-enabled tables may vary from implemen-
tation to implementation, ranging from implementations in
which the history-enabled table, the history table, and the
history view and the triggers necessary to maintain them are
defined by hand to implementations in which a routine such as
EnableHistory is provided by the relational database manage-
ment system to automate the process of history enabling a
table. The degree to which the components of the history-
enabled table are hidden from the user may vary from
embodiment to embodiment. In some embodiments, for
example, the user interface for performing temporal queries
may give the appearance that the temporal query is being
performed on the history-enabled table.

Many techniques may be used for representing the start
time, the end time, and the period of time a version of a row
was present in the history-enabled table. Moreover, many

US 9,384,222 B2

15

temporal queries may be performed in addition to the AS_OF
and BETWEEN queries that are disclosed in detail herein.
The forms of the invocations of the procedures used to create
a history-enabled table and to perform queries on the history-
enabled table are of course a matter of designer’s choice.

For all ofthe foregoing reasons, the Detailed Description is
to be regarded as being in all respects exemplary and not
restrictive, and the breadth of the invention disclosed here in
is to be determined not from the Detailed Description, but
rather from the claims as interpreted with the full breadth
permitted by the patent laws.

The invention claimed is:

1. A computer implemented method for creating and main-
taining a history-enabled data structure in a relational data-
base system, the method comprising:

using at least one processor to perform a process, the pro-

cess comprising:

identifying a first database table that is history-enabled by

modifying a schema for the first database table to
include a start time column, the first database table com-
prising a current row;
creating a history row in a history table to correspond to the
current row when the current row is modified in the first
database table, wherein the history row is not created by
obtaining information from a redo log having a set of
redo records;
creating a history view by at least determining a union of
the first database table and the history table, wherein the
history view is a relational data structure having a plu-
rality of history view rows, a history view start time
column, and a history view end time column, wherein
history view rows from the first database table have
history view start time column values from the start up
time column of the respective rows of the first database
table;
performing a temporal query on the history view by using
a SQL query; and

generating a temporal query result with one or more rows
in the history view for a period of time from the history
view.

2. The computer implemented method of claim 1, further
comprising:

tracking the first database table by updating or inserting the

history row with data in the current row prior to occur-
rence of the current row being modified.

3. The computer implemented method of claim 2, in which
the act of tracking the history of the first database table further
comprises:

updating or inserting a row period value in the history table

with start time data of the current row of the first data-
base table-and a change time data associated with the
change; and

updating or inserting the start time data of the current row

in the first database table with the change time data
associated with the change.

4. The computer implemented method of claim 3, in which
the act of updating or inserting the start time data of the
current row in the first database table comprises:

identifying a transaction that gives rise to the change in the

current row of the first database table;

identifying a transaction identifier for the transaction;

determining a commit time at which the transaction is

committed based at least in part upon the transaction
identifier; and

updating or inserting the commit time as the start time data

for the current row in the first database table.

20

25

30

35

40

45

o

5

16

5. The computer implemented method of claim 4, in which
the act of updating or inserting the start time data of the
current row in the first database table further comprises:

setting a first time point during execution of the transaction

but before the transaction is committed.

6. The computer implemented method of claim 5, in which
the first time point corresponds to a data manipulation lan-
guage operation that is associated with the change and occurs
prior to the commit time of the transaction.

7. The computer implemented method of claim 6, in which
the act of tracking the history of the first database table further
comprises:

updating the history row in the history table by updating or

inserting the commit time as the start time data table.

8. The computer implemented method of claim 1, the pro-
cess further comprising:

identifying a row that corresponds to a row period value

which overlaps at least a part of the period of time; and
classifying the row as the one or more rows for the temporal
query result.

9. The computer implemented method of claim 1, wherein
the current row is stored in a current row table, and the current
row table comprises a start time column that corresponds to
the current row in the first database table and comprises
information that indicates a time point at which data in the
current row becomes current.

10. The computer implemented method of claim 1,
wherein the history table includes a period column having a
row period value that indicates a first period of time during
which a corresponding row exists or existed.

11. An article of manufacture comprising a non-transitory
computer readable medium having stored thereupon a
sequence of operations which, when executed by at least one
processor, causes the at least one processor to perform a
method for creating and maintaining a history-enabled data
structure in a relational database system, the method com-
prising:

using at least one processor to perform a process, the pro-

cess comprising:

identifying a first database table that is history-enabled, the

first database table comprising a current row;
creating a history row in a history table to correspond to the
current row when the current row is modified in the first
database table, wherein the history row is not created by
obtaining information from a redo log having a set of
redo records;
creating a history view by at least determining a union of
the first database table and the history table, wherein the
history view is a relational data structure having a plu-
rality of history view rows, a history view start time
column, and a history view end time column, wherein
history view rows from the first database table have
history view start time column values from the start up
time column of the respective rows of the first database
table;
performing a temporal query on the history view by using
a SQL query; and

generating a temporal query result with one or more rows
in the history view for a period of time from the history
view.

12. The article of manufacture of claim 11, in which the
process further comprises:

tracking the first database table by updating or inserting the

history row with data in the current row prior to occur-
rence of the current row being modified.

US 9,384,222 B2

17

13. The article of manufacture of claim 12, in which the
process of tracking the history of the first database table
further comprises:

updating or inserting a row period value in the history table

with start time data of the current row of the first data-
base table and a change time data associated with the
change; and

updating or inserting the start time data of the current row

in the first database table with the change time data
associated with the change.

14. The article of manufacture of claim 13, in which the
process of updating or inserting the start time data of the
current row comprises:

identifying a transaction that gives rise to the change in the

current row of the first database table;

identifying a transaction identifier for the transaction;

determining a commit time at which the transaction is

committed based at least in part upon the transaction
identifier; and

updating or inserting the commit time as the start time data

for the current row in the first database table.

15. The article of manufacture of claim 14, in which the
process of updating or inserting the start time data of the
current row in the first database table further comprises:

setting a first time point during execution of the transaction

but before the transaction is committed.

16. A system for creating and maintaining a history-en-
abled data structure in a relational database system, the sys-
tem comprising:

at least one processor that is to:

identify a first database table that is history-enabled by

modifying a schema for the first database table to
include a start time column, the first database table com-
prising a current row;

create a history row in a history table to correspond to the

current row when the current row is modified in the first
database table, wherein the history row is not created by
obtaining information from a redo log having a set of
redo records;

create a history view by at least determining a union of the

first database table and the history table, wherein the
history view is a relational data structure having a plu-
rality of history view rows, a history view start time

18

column, and a history view end time column, wherein
history view rows from the first database table have
history view start time column values from the start up
time column of the respective rows of the first database
5 table;
perform a temporal query on the history view by using a
SQL query; and
generate a temporal query result having one or more rows
from the history view for a period of time in the history
view.

17. The system of claim 16, in which the at least one
processor is further to:

tracking the first database table by update or insert the

history row with data in the current row prior to occur-
rence of the current row being modified.

18. The system of claim 17, in which the at least one
processor that is to track the history of the first database table
is further to:

update or insert a row period value in the history table with

start time data of the current row of the first database
table and a change time data associated with the change;
and

update or insert the start time data of the current row in the

first database table with the change time data associated
with the change.

19. The system of claim 18, in which the at least one
processor that is to update or insert the start time data of the
current row in the first database table is further to:

identify a transaction that gives rise to the change in the

current row of the first database table;

identify a transaction identifier for the transaction;

determine a commit time at which the transaction is com-

mitted based at least in part upon the transaction identi-
fier; and

update or inserting the commit time as the start time data

for the current row in the first database table.

20. The system of claim 19, in which the at least one
processor that is to update or insert the start time data of the
current row in the first database table is further to:

set a first time point during execution of the transaction but

before the transaction is committed.

20

25

35

40

#* #* #* #* #*

